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Abstract. In this paper, sufficient conditions ensuring the existence of solutions for set-
valued equilibrium problems are obtained. The convexity assumption on the whole domain
is not necessary and just the closure of a quasi-self-segment-dense subset of the domain
is convex. Using a KKM theorem and a notion of Q-selected preserving R∗

−-intersection
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−-inclusion) for set-valued mapping, existence results are established in real Hausdorff
topological vector spaces.
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1. Introduction
Equilibrium problem theory can be viewed as a significant area of nonlinear analysis, where

the focus is on applications to optimization, variational inequalities, fixed point theory, and
etc.. The reader can find more discussions about various aspects of equilibrium problems and
its applications in[1, 2, 3, 4, 5] and the references therein .

In 2016, results for the existence of solutions of set-valued equilibrium problems were estab-
lished by László and Viorel [6]. The assumptions were considered just on a self-segment-dense
subset of the domain of involved set-valued bifunction. Afterward, a notion of locally segment-
dense sets presented to obtain existence results for single-valued equilibrium problems under
assumptions imposed on a locally segment-dense subset of the domain [7].

Quite recently, quasi-self-segment-dense subsets of the domain of involved bifunctions were
introduced [8]. The class of quasi-self-segment-dense sets properly includes the class of locally
segment-dense as well as self-segment-dense sets. The main disadvantage of the latter notion
is that the considered domain is not necessarily convex, and just the closure of a quasi-self-
segment-dense subset of the domain should be convex.

In this paper, new optimality conditions for the existence of solutions of nonconvex set-
valued equilibrium problems are established. No closedness assumptions or convexity struc-
tures on the whole domain are considered and the existence results are proved via a KKM
theorem in the setting of Hausdorff topological vector spaces.

The paper is organized as follows. In Section 2, definitions and auxiliary tools required for
proofs of results in the next sections are recalled. The notion of a quasi-self-segment-dense
set is also presented and a notion of Q-selected preserving R∗

−-intersection (R∗
−-inclusion) for
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set-valued mappings is introduced. In section 3, sufficient conditions ensuring the existence
of solutions for set-valued equilibrium problems with domains which are neither convex nor
closed, are provided.

2. Preliminaries
In this paper, let X be a Hausdorff topological vector space, and let K be a nonempty

convex subset of X. For given elements x, y ∈ K, [x, y] := {(1 − t)x + ty : t ∈ [0, 1]} is
the closed line segment. The semi-open segments [x, y[, ]x, y] and the open segment ]x, y[ are
defined analogously. If A is a nonempty subset of X, clA and convA denote the closure and
the convex hull of A, respectively.

In the sequel, the notations R+ = [0,+∞[, R∗
+ =]0,+∞[, R− =]−∞, 0], and R∗

− =]−∞, 0[,
where R =]−∞,+∞[ is the set of real numbers, are used.

Let K ⊆ X be nonempty, and let f : K × K → R be a bifunction. The single-valued
equilibrium problem is to find a point x̄ ∈ K such that

f(x̄, y) ≥ 0, ∀y ∈ K (EP).

To formulate a set-valued equilibrium problem, let F : K×K ⇒ R be a set-valued mapping.
The goal of the set-valued equilibrium problem is to find x̄ ∈ K such that

F (x̄, y) ⊆ R+, ∀y ∈ K (SEP).

It is also useful to consider the weak set-valued equilibrium problem which is to find x̄ ∈ K
such that

F (x̄, y) ∩ R+ ̸= ∅, ∀y ∈ K (WSEP).
S(F,K) (resp. SW (F,K)) denotes the set of all solutions of SEP (resp. WSEP).

In what follows, some notions of convexity for set-valued mappings are presented.

Definition 2.1 ([9]). Let K be a convex subset of X, and let G : K ⇒ R be a set-valued
mapping. We say that G is

• lower convex, if for every x1, x2, . . . , xn ∈ K and t1, t2, . . . , tn ≥ 0 such that
∑n

i=1 ti =
1, it holds that

n∑
i=1

tiG(xi) ⊆ G(
n∑

i=1

tixi) + R+;

• lower quasiconvex, if for every x1, x2, . . . , xn ∈ K and t1, t2, . . . , tn ≥ 0 satisfying∑n
i=1 ti = 1, then

n∩
i=1

(G(xi) + R+) ⊆ G(

n∑
i=1

tixi) + R+;

• upper convex, if for every x1, x2, . . . , xn ∈ K and t1, t2, . . . , tn ≥ 0 satisfying
∑n

i=1 ti =
1, then

G(
n∑

i=1

tixi) ⊆ (
n∑

i=1

tiG(xi))− R+.

It is easy to verify that every lower convex set-valued mapping is lower quasiconvex. In the
following, the definition of the upper quasiconvexity for set-valued mappings is presented.
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Definition 2.2 ([10]). Let K be a convex subset of X, and let G : K ⇒ R be a set-
valued mapping. We say that G is upper quasiconvex, if for every x1, x2, . . . , xn ∈ K and
t1, t2, . . . , tn ≥ 0 such that

∑n
i=1 ti = 1, it holds that

G(

n∑
i=1

tixi)− R+ ⊆
n∪

i=1

(G(xi)− R+).

Proposition 2.3 ([10]). Every upper convex set-valued mapping G : K → R is upper quasi-
convex.

One can easily provide examples of a set-valued mapping which is upper quasiconvex but
not upper convex (see [10]).

Notice that G : K ⇒ R defined by G(x) := {g(x)}, where g : K ⇒ R is a real single-valued
mapping, then the notion of upper (lower) convex mapping of G is equivalent to the classical
convexity of g.

Recall that the set-valued mapping G : X ⇒ R is lower semicontinuous at a point x0 ∈ K
iff for every open subset V of R such that G(x0)∩V ̸= ∅, there exists a neighborhood U ⊆ X
of x0 such that, for every point y ∈ U ∩K one has G(y) ∩ V ̸= ∅. Similarly, the set-valued
mapping G : K ⇒ R is called upper semicontinuous at a point x0 ∈ K iff for every open
subset V of R such that G(x0) ⊆ V , there exists a neighborhood U ⊆ X of x0 such that, one
has G(U) ⊆ V .

The set-valued mapping G is lower semicontinuous on K iff it is lower semicontinuous at
every point of K. The upper semicontinuity on K are analogously defined. We say that a
set-valued mapping G : X ⇒ Y is lower semicontinuous (resp. upper semicontinuous) on a
subset S of K if it is lower semicontinuous (resp. upper semicontinuous) at every point of S.

Next, some generalizations of upper and lower semicontinuity for set-valued mappins are
presented.

Definition 2.4 ([10]). Let K be a nonempty subset of X, and let S and T be two subsets of
K. Suppose that F : K ×K ⇒ R is a set-valued bifunction and λ ∈ R. F is called λ-transfer
upper semicontinuous on S × T if for every x ∈ S and y ∈ T , F (x, y) ⊆]−∞, λ[ implies that
there exist y′ ∈ T and a neighborhood U of x such that F (z, y′) ⊆]−∞, λ[ for all z ∈ U ∩ S.
F is called λ-transfer lower semicontinuous on S×T if for every x ∈ S and y ∈ T , F (x, y)∩]−
∞, λ[ ̸= ∅ implies that there exist y′ ∈ T and a neighborhood U of x such that F (z, y′)∩] −
∞, λ[ ̸= ∅ for all z ∈ U ∩ S.

It is easy to verify that if for every y ∈ T , F (·, y) is upper (resp. lower) semicontinuous on
S, then it is λ-transfer upper (resp. lower) semicontinuous for every λ ∈ R on S × T (take
y′ = y in the latter definition).

Remark 2.5. It is worth mentioning that to establish the existence results, it is required
for the bifunction F to be just 0-transfer upper (lower) semicontinuous on K0 ×Q, where Q
is a q-s-s-d subset of K and K0 is a nonempty compact subset of K. Hence, the continuity
conditions which we use are weaker than the ones in the literature.

2.1. Quasi-self-segment-dense sets. László and Viorel [6] introduced self-segment-dense
subsets. Given a convex subset K of X. The set D ⊆ K is called self-segment-dense in K if

(i) D is dense in K;
(ii) for every x, y ∈ D, cl([x, y] ∩D) = [x, y].



122 S. JAFARI

It must be noted that the notion of a self-segment-dense set coincide to the notion of a
dense set, in one dimension. Afterward, a concept of locally segment-dense sets was presented
in [7].
Definition 2.6. Given a convex subset K of X. The set D ⊆ K is said to be locally
segment-dense in K, iff

(i) for every x ∈ D and y ∈ K, the set ]x, y] ∩D is nonempty;
(ii) for every x, y ∈ D, cl([x, y] ∩D) = [x, y].

To establish existence results for nonconvex set-valued equilibrium problems, the following
notion, proposed in [8], is used.
Definition 2.7. Let X be a Hausdorff topological vector space, and let Q be a nonempty
subset of X. We say that the set Q is quasi-self-segment-dense (in short, q-s-s-d) if for every
x, y ∈ Q, cl([x, y] ∩Q) = [x, y].

Obviously, if Q ⊆ K is self-segment-dense or locally segment-dense, then Q is a q-s-s-d
subset of K. In fact, the class of the q-s-s-d sets is essentially larger than that of self-
segment-dense sets as well as locally segment-dense sets.

Unlike self-segment-dense sets which K is assumed to be convex, a set K which contains a
q-s-s-d set Q is not necessarily convex. For example, let X = R,K = (]−∞,−1]∩Q)∪ [0, 1[
and Q = [0, 1[∩Q, then Q is a q-s-s-d subset of K. Notice that both Q and K are nonconvex.
Note that Q is not dense in K and so Q is not self-segment-dense. It is easy to see that Q is
not locally segment-dense, since for x = 0 ∈ Q and y = −1 ∈ K, we have ]x, y] ∩Q = ∅.
Remark 2.8. Let K be a nonempty subset of X. Then every convex subset of K is quasi-
self-segment-dense. Hence one can provide many examples of quasi-segment-dense sets which
are not dense in K and so they are not self-segment-dense in K. On the other hand, one can
easily verify that q-s-s-d sets are self-segment-dense in their closures.

See [8, 10] for further explanations and examples of q-s-s-d sets.
The following key lemma to obtain existence results is used. Lemma 2.9 is a generalization

of Lemma 3.1 in [6] to the case of real Hausdorff topological vector spaces.
Lemma 2.9 ( [10]). Let X be a real Hausdorff topological vector space, and let D be a subset
of K satisfying

cl([x, y] ∩D) = [x, y], ∀x, y ∈ D.

Then for all finite subsets {d1, d2, . . . , dn} ⊆ D, one has
cl(conv{d1,d2, . . . , dn} ∩D) = conv{d1,d2, . . . , dn}.

To prove the existence results in what follows, the well-known intersection theorem by Ky
Fan [11] is used.
Theorem 2.10. Let K be a nonempty subset of a Hausdorff topological vector space X and
Γ : K ⇒ X be a set-valued mapping with closed values such that

(i) Γ is a KKM mapping, that is, for any n ∈ N and x1, . . . , xn ∈ K

conv{x1, . . . , xn} ⊆
n∪

i=1

Γ(xi);

(ii) there exists a nonempty compact convex subset B of K such that ∩x∈BΓ(x) is compact.
Then ∩x∈KΓ(x) ̸= ∅.
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2.2. Q-selected preserving R∗
−-intersection (R∗

−-inclusion) set-valued mappings. In
this subsection, a notion of q-s-s-d solution for set-valued equilibrium problems, which have an
important role in establishing existence results for nonconvex set-valued equilibrium problems,
is presented.

Definition 2.11. Let K be a nonempty subset of X, let Q be a q-s-s-d subset of K, and let
F : K × K ⇒ R be a set-valued mapping. An element x̄ ∈ K is a q-s-s-d solution of SEP
(WSEP), if

F (x̄, y) ⊆ R+, ∀y ∈ Q,

F (x̄, y) ∩ R+ ̸= ∅, ∀y ∈ Q,

respectively. The set of all q-s-s-d solutions of SEP (WSEP) is denoted by SQ(F,K) (respec-
tively, SQ

W (F,K)).

An important question arises about sufficient conditions satisfying the relationships SQ(F,K) ⊆
S(F,K) and SQ

W (F,K) ⊆ SW (f,K). To explore this way, the following notions are intro-
duced.

Definition 2.12. Let K be a nonempty subset of X, let Q ⊆ K, and let G : K ⇒ R be
a set-valued mapping. We say that G is Q-selected preserving R∗

−-intersection on K, if the
following implication holds:

if G(x) ∩ R∗
− ̸= ∅ for some x ∈ K then there exists q ∈ Q such that G(q) ∩ R∗

− ̸= ∅.
The set-valued mapping G is called Q-selected preserving R∗

−-inclusion on K, if the following
implication holds:

if G(x) ⊆ R∗
− for some x ∈ K then there exists q ∈ Q such that G(q) ⊆ R∗

−.

Example 2.13. Let X := R and K := Q. Consider the mapping G : R ⇒ R defined
by G(x) = [sinx, |x| + 1]. Then G is Q-selected preserving R∗

−-intersection on K, where
Q = [−π

2 , π2 ] ∩ Q. In fact if G(x) = [sinx, |x| + 1] ∩ R∗
− ̸= ∅, then for q = −π

2 , we have
G(−π

2 ) = [−1, π2 + 1] ∩ R∗
− ̸= ∅.

Now, consider also the mapping H : R ⇒ R defined by H(x) = [−|x|−1, sinx]. It is easy to
see that H is Q-selected preserving R∗

−-inclusion on K, where Q = [−π
2 , π2 ]∩Q. According to

the definitions of G and H, we conclude that Q-selected preserving R∗
−-intersection mappings

and Q-selected preserving R∗
−-inclusion mappings do not imply each other.

In the sequel, a result that highlights a large class of set-valued mappings is presented,
which are Q-selected preserving R∗

−-intersection on K, when Q is dense in the convex set K.
Recall that hemicontinuity of a set-valued mapping G : K ⇒ R is continuity along straight

lines:
Let K be a nonempty convex subset of X. We say that G is upper hemicontinuous at x0 if
the map t 7→ G((1− t)x0 + tx) is upper semicontinuous at 0 for every x ∈ K. Similarly, g is
lower hemicontinuous at x0 ∈ K if the map t 7→ g((1− t)x0 + tx) is lower semicontinuous at
0 for every x ∈ K.

Notice that G is lower (resp. upper) hemicontinuous on K \Q if G is lower (resp. upper)
hemicontinuous at every x0 ∈ K \Q.

Proposition 2.14. Let K be a nonempty convex subset of X, and let Q be dense in K.
Assume that the set-valued mapping G : K ⇒ R is lower hemicontinuous on K \Q. Then G
is Q-selected preserving R∗

−-intersection on K.
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Proof. Assume that there exists x0 ∈ K\Q such that G(x0) ∩ R∗
− ̸= ∅. It follows from lower

hemicontinuity of G at x0, for every x ∈ K there exists δx > 0 such that G((1 − t)x0 +
tx) ∩ R∗

− ̸= ∅, where t ∈ [0, δx[. Since Q is dense in K, there exists x′ ∈ K satisfying
]x0, (1− t)x0+ tx′[∩Q ̸= ∅, where |t| < δx′ . Let z = (1− t0)x0+ t0x

′ ∈ Q with |t0| < δx′ . This
implies that G(z) ∩ R∗

− ̸= ∅ which completes the proof. □
Proposition 2.15. Let K be a nonempty convex subset of X, and let Q be dense in K.
Assume that the set-valued mapping G : K ⇒ R is upper hemicontinuous on K \Q. Then G
is Q-selected preserving R∗

−-inclusion on K.
Proof. The proof is similar to the one in Proposition 2.14. □
Remark 2.16. When Q is a self-segment-dense subset of K, Proposition 2.14 is valid (since
self-segment-dense sets are dense in K and K is a convex set). Since lower (resp. upper) hemi-
continuity of G is weaker than lower (resp. upper) semicontinuity of a set-valued mapping G,
being Q-selected preserving R∗

−- intersection on K (resp. Q-selected preserving R∗
−-inclusion

on K) is weaker than lower (resp. upper) semicontinuity on K \ Q, when Q is dense and
convex.

The following lemma makes a relationship between q-s-s-d solutions and solutions of a SEP
as well as WSEP.
Lemma 2.17. Let Q be a q-s-s-d subset of K, and let F : K × K ⇒ R be a set-valued
bifunction. If for every x ∈ K,

(i) F (x, ·) is Q-selected preserving R∗
−-intersection on K, then SQ(F,K) ⊆ S(F,K);

(ii) F (x, ·) is Q-selected preserving R∗
−-inclusion on K, then SQ

W (F,K) ⊆ SW (F,K).
Proof. The proof of (i) (resp. (ii)) follows directly from the definition of Q-selected preserving
R∗
−-intersection (respectively, Q-selected preserving R∗

−-inclusion) set-valued mappings. □
In Lemma 2.22 in [10], a condition which guarantees the inclusion SD(F,K) ⊆ S(F,K),

where D is locally segment-dense in K, has been presented.
Lemma 2.18 ([10]). Let K be a convex subset of X, let D be a locally segment-dense set
in K and let F : K × K ⇒ R be a set-valued mapping. If Condition (2) presented in the
following is satisfied, then SD(F,K) ⊆ S(F,K).

Condition (1): if for every x, y ∈ K with F (x, y) ∩ R∗
− ̸= ∅, there exists z ∈ D∩]x, y[ such

that F (x, z) ∩ R∗
− ̸= ∅.

Remark 2.19. One can easily verify that being Q-selected preserving R∗
−-intersection on K

with respect to the second variable is less restrictive than Condition (1).

3. Existence of solutions
In this section, existence results for set-valued equilibrium problems in real Hausdorff topo-

logical vector spaces without convexity assumption on the whole domain are established. It
is worth mentioning Lemma 2.9 is a useful tool to prove the results. Throughout this section,
we assume that K is a nonempty subset of X.

In the next theorem, assumptions which guarantee the existence of solutions of set-valued
equilibrium problems, are presented.
Theorem 3.1. Let K be a nonempty subset of X, and let Q be a q-s-s-d subset of K. Let
F : K ×K ⇒ R be a set-valued mapping satisfying the following conditions:
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(i) for every x ∈ Q, F (x, x) ⊆ R+;
(ii) for every x ∈ Q, F (x, ·) is lower quasiconvex on Q;
(iii) there exist a nonempty compact set K0 ⊆ K and y0 ∈ D such that

F (x, y0) ∩ R∗
− ̸= ∅, ∀x ∈ K \K0;

(iv) F is 0-transfer lower semicontinuous on K0 ×Q;
(v) for every x ∈ K, F (x, ·) is Q-selected preserving R∗

−-intersection on K.
Then S(F,K) ̸= ∅.

Proof. Consider the set-valued mapping G : Q ⇒ K by
G(y) = {x ∈ K : F (x, y) ⊆ R+}.

To prove SD(F,K) ̸= ∅, we show that ∩
y∈Q

G(y) ̸= ∅.
First, we justify that ∩

y∈Q
cl(G)(y) ̸= ∅, where the set-valued mapping cl(G) : Q ⇒ clK is

defined by cl(G)(y) = cl(G(y)). Clearly, cl(G)(y) is closed for every y ∈ Q. Furthermore, the
coercivity condition (iii) implies that cl(G)(y0) is compact. To show that cl(G) is a KKM
mapping, let y1, . . . , yn be finite elements in Q and t1, . . . , tn ∈ R+ be such that

∑n
i=1 ti = 1

and
∑n

i=1 tiyi ∈ Q. Because of condition (i) and the lower quasiconvexity of F (
∑n

i=1 tiyi, ·)
on Q

n∩
i=1

F (
n∑

i=1

tiyi, yi) ⊆ F (
n∑

i=1

tiyi,
n∑

i=1

tiyi) + R+ ⊆ R+.

The latter implies that there exists j ∈ {1, 2, . . . , n} such that F (
∑n

i=1 tiyi, yj) ⊆ R+. Thus,
conv{y1, . . . , yn} ∩Q ⊆ ∪n

i=1G(yi),

and then,
cl(conv{y1, . . . , yn} ∩Q) ⊆ cl(∪n

i=1G(yi)) = ∪n
i=1cl(G)(yi).

Applying Lemma 2.9, we have
conv{y1, . . . , yn} ⊆ ∪n

i=1cl(G)(yi).

The latter yields cl(G) is a KKM mapping. Now, it follows from Theorem 2.10 that ∩
y∈Q

cl(G(y)) ̸=

∅. Using assumption (iii), G(y0) ⊆ K0 and therefore
∩

y∈Q
cl(G)(y) = ( ∩

y∈Q
cl(G)(y)) ∩K0 = ∩

y∈Q
(cl(G)(y) ∩K0).

According to 0-transfer lower semicontinuity of F on K0 ×Q, we deduce that
∩

y∈Q
(cl(G)(y) ∩K0) = ∩

y∈Q
(G(y) ∩K0).

We justify the latter claim: Let x /∈ ∩
y∈D

(G(y) ∩K0) and x ∈ K0. There is y0 ∈ Q such that
x /∈ G(y0) which implies that F (x, y0)∩]−∞, 0[̸= ∅. Since F is 0-transfer lower semicontinuous
on K0 ×Q, there exist an element y′ ∈ Q and a neighborhood U of x such that F (z, y′)∩]−
∞, 0[̸= ∅ for all z ∈ U ∩K0. This yields x /∈ cl(G)(y′) and thus, x /∈ ∩

y∈Q
(cl(G)(y) ∩K0).

Hence ∩
y∈Q

G(y) = ∩
y∈Q

(G(y) ∩K0) ̸= ∅ which shows that SQ(F,K) ̸= ∅. Finally, It follows
from assumption (v) and Lemma 2.17 that S(F,K) ̸= ∅. □

The following corollary is derived from Theorem 3.1.
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Corollary 3.2. Let K be a convex subset of X, let Q be self-segment-dense in K, and let
F : K ×K ⇒ R be a set-valued mapping satisfying the following conditions:

(i) for every x ∈ K, F (x, x) = {0};
(ii) for every x ∈ D, F (x, ·) is lower quasiconvex on D;
(iii) there exist a nonempty compact set K0 ⊆ K and y0 ∈ D such that

F (x, y0) ∩ R∗
− ̸= ∅, ∀x ∈ K \K0;

(iv) F is 0-transfer lower semicontinuous on K0 ×D;
(v) for every x ∈ K, F (x, ·) is lower hemicontinuous on K \Q.

Then S(F,K) ̸= ∅.

Proof. From the assumptions (v) and Proposition 2.14, it follows that for every x ∈ K,
F (x, ·) is Q-selected preserving R∗

−-intersection on K. Now, by Theorem 3.1 the desired
result is derived. □

Remark 3.3. Theorem 3.1 extends Theorem 3.5 of [10] in the following aspects:
(a) The assumptions of Theorem 3.1 are imposed on a q-s-s-d subset Q of K, while the

assumptions of Theorem 3.5 of [10] are imposed on a locally segment-dense subset of
the convex set K. Notice that the class of the q-s-s-d sets is essentially larger than
that locally segment-dense sets.

(b) It is not required for the set K to be convex;
(c) According to Remark 2.19, Condition (v) of Theorem 3.1 is weaker than Condition

(v) used in Theorem 3.5 in [10].
(d) It is worth mentioning that Theorem 4.1 in [6] can be derived from Corollary 3.2.

The following result for weak set-valued equilibrium problems generalizes both Theorem
4.1 in [6] and Theorem 3.7 of [10] similar to the aspects mentioned in Remark 3.3.

Theorem 3.4. Let K be a nonempty subset of X, and let Q be a q-s-s-d subset of K. Let
F : K ×K ⇒ R be a set-valued mapping satisfying the following conditions:

(i) for every x ∈ Q, F (x, x) ∩ R+ ̸= ∅;
(ii) for every x ∈ Q, F (x, ·) is upper quasiconvex on Q;
(iii) there exist a nonempty compact set K0 ⊆ K and y0 ∈ Q such that

F (x, y0) ⊆ R∗
−, ∀x ∈ K \K0;

(iv) F is 0-transfer upper semicontinuous on K0 ×Q;
(vi) for every x ∈ K, F (x, ·) is Q-selected preserving R∗

−-inclusion on K.
Then SW (F,K) ̸= ∅.

Proof. Consider the set-valued mapping GW : Q ⇒ K by
GW (y) = {x ∈ K : F (x, y) ∩ R+ ̸= ∅}.

To prove SD
W (F,K) ̸= ∅, we show that ∩

y∈Q
GW (y) ̸= ∅.

First, we justify that ∩
y∈Q

cl(GW)(y) ̸= ∅, where the set-valued mapping cl(GW) : Q ⇒ clK is
defined by cl(GW)(y) = cl(GW(y)). Clearly, cl(GW)(y) is closed for every y ∈ Q. Furthermore,
the coercivity condition (iii) implies that cl(GW)(y0) is compact. To show that cl(GW) is
a KKM mapping, let y1, . . . , yn be finite elements in Q and t1, . . . , tn ∈ R+ be such that
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i=1 ti = 1 and

∑n
i=1 tiyi ∈ Q. Because of condition (i) and the upper quasiconvexity of

F (
∑n

i=1 tiyi, ·) on Q

F (

n∑
i=1

tiyi,

n∑
i=1

tiyi)− R+ ⊆
n∪

i=1

F (

n∑
i=1

tiyi, yi)− R+.

The latter implies that there exists j ∈ {1, 2, . . . , n} such that F (
∑n

i=1 tiyi, yj)) ∩ R+ ̸= ∅.
Thus,

conv{y1, . . . , yn} ∩Q ⊆ ∪n
i=1GW(yi),

and then,
cl(conv{y1, . . . , yn} ∩Q) ⊆ cl(∪n

i=1GW(yi)) = ∪n
i=1cl(GW)(yi).

Applying Lemma 2.9, we have

conv{y1, . . . , yn} ⊆ ∪n
i=1cl(GW)(yi).

The latter yields cl(GW) is a KKM mapping. Now, it follows from Theorem 2.10 that
∩

y∈Q
cl(GW(y)) ̸= ∅. Using assumption (iii), GW (y0) ⊆ K0 and therefore

∩
y∈Q

cl(GW)(y) = ( ∩
y∈Q

cl(GW)(y)) ∩K0 = ∩
y∈Q

(cl(GW)(y) ∩K0).

According to 0-transfer upper semicontinuity of F on K0 ×Q, we deduce that

∩
y∈Q

(cl(GW)(y) ∩K0) = ∩
y∈Q

(GW(y) ∩K0).

We justify the latter claim: Let x /∈ ∩
y∈D

(GW (y)∩K0) and x ∈ K0. There is y0 ∈ Q such that
x /∈ G(y0) which implies that F (x, y0) ⊆]−∞, 0[. Since F is 0-transfer upper semicontinuous
on K0 × Q, there exist an element y′ ∈ Q and a neighborhood U of x such that F (z, y′) ⊆
]−∞, 0[ for all z ∈ U ∩K0. This yields x /∈ cl(GW)(y′) and thus, x /∈ ∩

y∈Q
(cl(GW)(y) ∩K0).

Hence ∩
y∈Q

GW (y) = ∩
y∈Q

(GW (y) ∩ K0) ̸= ∅ which shows that SQ
W (F,K) ̸= ∅. Finally, it

follows from assumption (v) and part (b) of Lemma 2.17 that SW (F,K) ̸= ∅. □

Using Theorem 3.4 and Proposition 2.15, the next corollary establishes an existence result
for a weak set-valued equilibrium problem.

Corollary 3.5. Let K be a convex subset of X, and let Q be self-segment-dense in K. Let
F : K ×K ⇒ R be a set-valued mapping satisfying the following conditions:

(i) for every x ∈ K, F (x, x) = {0};
(ii) for every x ∈ Q, F (x, ·) is upper quasiconvex on Q;
(iii) there exist a nonempty compact set K0 ⊆ K and y0 ∈ Q such that

F (x, y0) ⊆ R∗
−, ∀x ∈ K \K0;

(iv) F is 0-transfer upper semicontinuous on K0 ×Q;
(vi) for every x ∈ K, F (x, ·) is upper hemicontinuous on K \Q.

Then SW (F,K) ̸= ∅.

Proof. According to Proposition 2.15, for every x ∈ K, F (x, ·) is Q-selected preserving R∗
−-

inclusion on K. Now using Theorem 3.4, the proof is complete. □
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